A SPHERICAL WAVE IN A VISCOELASTIC HALF-SPACE

A. S. Semenov UDC 539.374

The propagation of spherical waves in an isotropic elastic medium has been studied sufficiently
completely (see, e.g., [1-4]). It is proved [5, 6] that in imperfect solid media, the formation and
propagation of waves similar to waves in elastic media are possible. With the use of asymptotic
transform inversion methods in {7] a problem of an internal point source in a viscoelastic me-
dium was investigated. The problem of an explosion in rocks in a half-space was considered in
{8]. A numerical Laplace transform inversion, proposed by Bellman, is presented in [9] for the
study of the action of an explosive pulse on the surface of a spherical cavity in a viscoelastic
medium of Voigt type. In the present study we investigate the propagation of a spherical wave
formed from the action of a pulsed load on the internal surface of a spherical cavity in a visco-
elastic half-space. The potentials of the waves propagating in the medium are constructed in
the form of series in special functions. In order to realize viscoelasticity we use a correspon-
dence method [10]. The transform inversion is carried out by means of a representation of the
potentials in integral form and subsequent use of asymptotic methods for their calculation.
Thus, it becomes possible to investigate the behavior of a medium near the wave fronts. The
radial stress is calculated on the surface of the cavity.

We are given a half-space with a spherical cavity of radius « at a depth h from the surface (h> a). At
time t = 0 a pulsed load is applied to the surface of the cavity. We formulate the problem of finding the dis-
placement field and the stress field in a half-space with account of the viscoelastic properties of the medium.
The cylindrical r, z and spherical R, § coordinate systems are connected, respectively, with the free surface
of the half-space and the center of the cavity. We assume that the displacement field and stress field are in-
dependent of the azimuthal angle. The problem consists of solving the Cauchy equation

Ori1,1 = Piih»
satisfying the conditions
ur =0, t<<0; o= H(R, 1), R =0, 1>0; o = fo(r. 1), 3 =0,
t >0,
where k= 1,2; I = 1.2. For account of energy dissipation in a viscoelastic medium for the oscillation of
particles according to Hooke's law, additional terms are introduced by replacing the Lame elastic constants

A and p by some linear operators A and M or operators that are differential with respect to time with con-
stant coefficients, or integral with respect to time with difference kernels.

Solution of the formulated unsteady problem by using a Laplace transformation with respect to time with
parameter s in accordance with known relations reduces to finding the potential & of the longitudinal wave
and the potential ¥ of the transverse waves from the equations

2 )@ =0,
(VV7 n) (1)
(V*—-3)¥=0
with account of the boundary conditions
.|"5RR = —P,
for R =m0 = 0; @
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[0:: =1,
z=10 ;
for § l(f,: . O,

Here &, ¥, and P are the Laplace transforms of the functions ¢, ¢, and p; f; = ~P&(t); P = const;
o = sup; B = vy vp = [0/ = 2M) 173 v, = (/M)

The unknown potentials are represented in the form

(D:cbo_q)l"‘(p:—: E (Dim";‘ Z‘D(DZm%—iv
m=10 m=
: x « (3)
‘F:IF0+\P1_‘1P‘2——= > \P‘Zm_‘,‘ 2 q’im—%lv
m=0 m=10

where &, and ¥, are the potentials of the primary waves; &,m and ¥,y are the potentials of the waves re~

flected from the spherical cavity; &m+; and ¥, +y are the potentials of the waves reflected from the sur-

face of the half-space. A solution is constructed for all the &y and ¥, (m =0,1, 2, 3,...) separately in the
form of a series in spherical Hankel functions hp(z) of the first or second kind (this, in particular, makes it

possible to represent the final solution in the form of combinations of elementary functions)

@, = X al'h, (iaR,) P, (cosd);
=0 (4)

nd oP s 8
V= X Bk, (R
=0

=3

where the a%l and bg’ are unknowns, determined from the boundary conditions; the P,(cosé) are associated
Legendre polynomials; k =1.2; Ry = R; R, = r. We limit ourselves to a search for the first three terms in
(3). Considering Ed. (1) in a spherical coordinate system R, ¢ with origin at the center of the spherical cavity,
andassuming in (4) thatm=0,Ry = Ry =R, hl({) (iaR) is a spherical Hankel function of the first kind, we obtain
the potential of the primary wave:

Y, = 0,0, = — f%a.) B (i R).
The: unknown A(a) is determined from the boundary condition {2)

A(a) = — M ad®)(Ba® — 4ao + 4).

Finally,
Dy = (Pa® RM) [e—2E=2/(B%42 +— 4aa — 4)]. 5)

To determine the potentials

®y = X aphy (iwr) P, (cos 6),

—
n=u

bl 5y . 0P (cos8)
W= X bl (ipr) —og

n=0

of the waves reflected from the surface of the half-space, we use an integral Sommerfeld representation of
spherical functions [4]:

@ . R YRS k) g,
) (lcR)~7-b§ e e kdk,
which allows us to write a solution of Egs. (1) in the cylindrical coordinate system r, z, coupled with the sur-
face of the half-space, in the form

K Jolkryhk _Vii—g®
@opes = | Afh) DLEDE —ViE=a? gy
Zm—1i _0\ ()VAZT‘aZe 1

e

¢ Jy(kr)yk VR
Yooy = | B(k) =22 ~dk.
et o\ ( )Vm»;—ﬁ‘ze

The condition for vanishing of the stresses that arise due to the potentials &,y * &4 and Tom T ¥om+1
for z = 0 leads to a system of equations for finding the unknowns A (k) and B (k). Finally, the potentials of
the once-reflected waves acquire the form

oo

— P ; T (k) k 2 — (h-—2)¥ R*+a® dl:
=@ Ty ke '
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. P 4(2k2 + B2A2 —hVEitgE + : VTP
v, —aA(a)h 7 J1lkr)e T+ VIR gy,

where z<<h; R(k) = (2k% - B2 — 43V B2 + V'K + B% T(k) = (28 + B*2+4k*V E*Fa? VI F B* . The trans-
form inversion is simplified with the substitution of the variable of integration
k = sv,p. (6)

Converting from Bessel functions to Hankel funetions and using the asymptotic representation of the latter,
the integrals can be calculated from the method of steepest descents:

. R . . 3n
2PF e P ek 2PF 9—1 Tt
O, =2 — Y= (M
ad (e, s)R ad (e, ) V7T
where .
R = [r? = (h— 2)*|472; d = hsec oy — ZVseC oy} V = Uy/Ug;
7 (2r* —viR®) 4R (h— ) VR _ 2
P T T2 _veR?p _ 4R (h—5)VREE -2’ &
Fo— v¥2 sin%a, cos 2(12
$ (\ cos? 2., 4 4sin? &, COS @y cosa,) V' VA sac? gy — 5secs s !

where the following relations are satisfied:
sin oy/v, = sin a/v,, r=higa; — z tg a,
(eq is the angle of incidence on the boundary of the half-space of the longitudinal wave; ¢, is the angle of

reflection of the transverse wave that is formed).

Considering Eqgs. (1) in the coordinate system coupled with the center of the cavity for m = 2 in (4) the
potentials &, and ¥, of the twice-reflected waves are represented in the form

=3 a2 (ixR) P, (cos 0); ¥, = :. b2h (igR) L “"SB).

The unknowns @}, and b% can be expressed in terms of af and bi, taking into account the vanishing of
the stresses that arise due to the potentials ®ym+y * ®ym+1 and ¥ym+y ¥ ¥ym+g for R = a, i.e., on the sur-
face of the cavity. This condition leads to the system of equations

A (@) 22" + Bo(@) by = — [En (@) @7+ Fy(a) b7,
Cal@)an™™ + Du (@™ = — [Gy ()" + Ly () 57 ].
The coefficients Ep, Fp, Gp, and Ly coincide with Ay, By, Cp, and Dy, respectively, when in the latter, in-

stead of spherical functions of the first kind we take spherical functions of the second kind. The system is
solved for m = 2 with respect to the unknowns a%l and bzn. Thus,

s BG —DE bt B L —F.D
D, = Dpy + Yoy = X af —2 2T 1P (1uR) Py (cos@) =~ X by #A—"_"—h;” (iaR) P, (cos 6);
2 22 2 0 Z n=0 ’
5 46 —CE apP <, G F — 4
Y, =D+ V= O J_"K_'li_a;hg)(igfz)_f%gis_@ ~ Z.OM.TJ}_E_[) B (i ﬁg) Pn (005 )
n=0 n=

where
A= A'nDn = Bncn;

1 PrEn— T (k) & p (Vk'l = aﬂ) —eRVEE gy 1)
&n ad (a) gﬂ(k)vm " o ¢ ’ )

Pi" 2 (2n = 1)
afn {(n—+ 1) 4 (a)

922t A9y 1.3 AV TIE ZBe (VT - ViTT o
bh = — SRS P) R Pn(l =5 )e_mhzwa - VETE g

H (%) B /

CC’DH

&,, and ¥,; are the potentials of the reflected longitudinal and transverse waves that arise from the incidence
of the longitudinal wave; &,; and ¥,, are the potentials of the reflected longitudinal and transverse waves
that arise from the incidence of the transverse wave. For convenience the inversions of the potentials &, and
¥, are represented in integral form. For this we can use the asymptotic representation of the spherical
functions, the integral representation of Legendre polynomials, and the Watson method of representation of
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series in the form of integrals. With account of the earlier introduced substitution (6) and Egs. (9), the poten-
tial, for example, of the twice-reflected longitudinal wave, takes the form

o

‘yA Ll N .
D,, = — DA aA(D) \‘ j j 3 E(p, nye’dndpdfdy, (10)

where
7

f=7ls,p,n &0 =—svp2a+ R+ 2h VpEL 1\ — {inn/4 =
4+ aln (VPP 1 — peosE)(—cos®— isin Bcosn)|;
T (p) pi™ ! 2r A1)

Fip.n)=— VL isinnn

Zy is the contour of integration in the complex n place, consisting of a loop enclosing the positive part of
the real axis from the point Re (n) < 1/2; C¢ and Cy are closed contours of integration, respectively, in the
¢ and n complex planes, containing, respectively, the points £ =0 and » = 0. The integrals in (10) can be
calculated, e.g., by the method of steepest descents. The potentials W¥,y, &,;, and ¥,,, on the basis of the
same remarks, can be represented in similar form and can be calculated from the method of steepest de-
scents.

The inversion of the obtained transform is carried out under the assumption that a viscoelastic medium
has an instantaneous elasticity and

rp/v; = v = const.

According to [10], the quantity v, can be replaced by vp(s) = [pI(s)]Uz, where I(s) for a rather wide class
of viscoelastic materials can be represented in the form

I(s)= ans" -+ rzn_is"_1 + . tas+ag
bsPbb, ST L bis by

(11)

With the use of asymptotic methods, phenomena at the fronts of a strong discontinuity can be studied [6]. In
this case we study the asymptotic behavior of the solution for s —«, and vp(s) can be represented in the
form

o) = [pI ()] =" [1 DENEE 44—2) o (C —42 ég-) o+ 0(3“4)1,

where ® = (pam/ bm)‘i/ 2 is the wave -propagation velocity; the coefficients A, B, and C are determined by
the expansion of (11) in a series in negative powers of s. For the transform inversion we must take into ac-
count that only the expression

e—svpf Jad(a, 5) (12)
depends on the transformation parameter s, where f is a function that is independent of s and takes 2 speci-

fic form in each case. We limit ourselves to the inversion of the potentials of the initial and once-reflected
waves. The expansion of (12) in a series and the use of a2 known inversion formula leads to the equation

. T exp:{—<R¥a>(—;i~“’)+“} [1- (2 ﬁ_ﬁ)%+0(S“2)]d8- (13)

Po = pR2mi a?s? - 4a?v2uis - 4vin? 4 2avixA P 8

0—ic

The representation of the potentials ¢, and ¥4, reflected from the surface of the half-space of the waves
[which can be noted from a comparison of (5) and (7)] is similar in form.

Assuming in (11) that ay = 0,b, =0, by # 0, and all the remaining @, and by equal zero, we have
y =0, A=0,B =~by/2b,, ¢ = —(2av?/n)by/by, €, = a’s?+4avPns+4vi?,

According to the Jordan lemma, the integral in (13) is nonzero for t = (R — a)/%, and equals the sum of
the residues at the singular points of the integrand function. Hence, the potentials will be nonzero only from
that moment of time when the front of the appropriate wave arrives at the point being considered. Calcula-
tions for the first two terms of the series in the dimensionless parameters tw/a = T, sa/w=§, R/a = Ry lead
to the following expressions: for the potential of the primary wave

o 1 1 e—2Vi(t—RotD)

P T IR, YT ow S0 Y, -+

boas ‘ 1 —2v(t—RyT1)
= — &
46%\72

b .
(\COS Yo _:VT:T sSin YO)]} ’
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where vo = 2vVv1 —p2(r — Ry * 1}; for the potentials of the once-reflected waves

o 2V T—R;+1) | r . .
?l — V 2 F]J I e ( x sin Y1+ bo;z l.i —e WWET—R;+1) cos ,Yl _J_—Sln ?1)]}
aP 2R, | vYi-w 8bzv? Vi—
5 —2v}(T—d+1} 912 / )
P, V2Fs |e . boa, [1 e 2vHT—d+1) o w . ]
¥l— - siny, + 22 COS VP, ———siny,||!
aP 2V ry v/ T—= [y 8b3v? L v Vi V2 J’

where d, Fp, and Fg are taken from (8) with r, R', h, and z replaced by the dimensionless parameters =
r/a, Ry =R'a, H=h/a, and Z = z/a; vy = 2W 1 —p2r =Ry + 1); v, =2wW 1 —12(r —d + 1). Based on known
formulas we can calculate the displacements and the stresses at points of the half-space. For example, the
radial stress arising from the propagation of the primary wave is calculated from the equation

X ! LB2Y 9y, n
IR L SRt (1= (e Ry — dvitg) + 2v (1 —2v) €08 Yy 4 (1= 2v3Rei® i w 1 o beay [T — &y
P R% AN 2 (1 —2v) 0 vYT—w Vo | T »’1b:§: |
—avia—retn) | YL A )—(1—”(1_'_‘\)(1 K )Cosy -+ (1—wvd —Z.Rnw )-——\ (1_ 213,) sin "‘\\

For Ry =1,7 = 0, the equation gives the pressure on the surface of the cavity at the initial time or = —P.
We determlne the variation of the stress on the surface of the cavity up to the time of arrival of the reflected
wave for v=0.3; Ry = 1; H=15; 0 < 7 < 28; byay/b? = 1. The calculation results are shown in Fig. 1.
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